Nike магазин одежды в москва brandshop.ru.



Rambler's Top100


       
 
 

МИНИСТЕРСТВО ТРАНСПОРТНОГО СТРОИТЕЛЬСТВА

ГОСУДАРСТВЕННЫЙ ВСЕСОЮЗНЫЙ ДОРОЖНЫЙ

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ

СОЮЗДОРНИИ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

ПО ОПРЕДЕЛЕНИЮ ГРУЗОПОДЪЕМНОСТИ ЖЕЛЕЗОБЕТОННЫХ ПРОЛЕТНЫХ СТРОЕНИЙ АВТОДОРОЖНЫХ МОСТОВ ПРИ ПРОПУСКЕ СВЕРХНОРМАТИВНОЙ НАГРУЗКИ ВЕРОЯТНОСТНЫМ МЕТОДОМ

Утверждены зам. директора Союздорнии

канд. техн. наук В.М. Юмашевым

МОСКВА 1989

Составлены на основе экспериментальных и теоретических исследований фактической несущей способности железобетонных балочных пролетных строений автодорожных и городских мостов с учетом опыта применения методических рекомендаций.

Предложен вероятностный метод расчета сечений железобетонных элементов на прочность по изгибающему моменту и поперечной силе. Рекомендовано учитывать характер распределения несущей способности сечения по прочности при определении грузоподъемности пролетного строения.

Рассмотрены вопросы определения несущей способности сечений с нормальной трещиной и при наличии арматуры, пораженной коррозией.

Предложено ограничивать частоту пропуска сверхнормативных нагрузок в зависимости от ширины раскрытия трещин.

Приведена программа расчета на ЭВМ сечений изгибаемых железобетонных элементов.

Применение настоящих Методических рекомендаций позволит увеличить временные вертикальные нагрузки от подвижного состава на пролетные строения, рассчитанные по действующим и ранее разработанным нормам, с одновременным обеспечением требуемого уровня их надежности.

Предисловие

С развитием энергетической, химической и других отраслей промышленности обострилась проблема доставки тяжелых грузов (различных агрегатов, узлов, трансформаторов, парогенераторов и т.п. массой до 600(103 кг и более), которые по условиям монтажа и эксплуатации необходимо собирать в заводских условиях и транспортировать на объекты в состоянии максимальной заводской готовности. Этим обусловлено увеличение выпуска многоосных многоколесных автомобилей с прицепами и полуприцепами. Нагрузки, создаваемые грузами данного типа совместно с транспортными средствами, часто оказываются сверхнормативными для пролетных строений мостов и путепроводов. Причем количество сверхнормативных нагрузок, которые требуется пропустить по автодорожным мостам и путепроводам, возрастает в среднем на 10 % в год. Это вызывает необходимость оценивать возможность пропуска таких нагрузок по автодорожным мостам и путепроводам.

Принятая на практике методика расчета железобетонных конструкций мостов и путепроводов (по СНиП 2.05.03-84) и “Инструкция по определению грузоподъемности железобетонных балочных пролетных строений автодорожных мостов” ВСН 32-78 (М.: Транспорт, 1979) раздельно учитывают входящие в расчет случайные величины (прочностные характеристики материалов, временную вертикальную нагрузку и т.д.), не учитывая при этом характер распределения несущей способности сечений конструкции. Это приводит к завышению запаса прочности конструкций.

Настоящие Методические рекомендации основаны на расчете сечений изгибаемых железобетонных элементов методом статистических испытаний (методом Монте-Карло) и предусматривают оценку реальной грузоподъемности балок железобетонных пролетных строений автодорожных мостов и путепроводов как при эпизодическом (разовом), так и регулярном пропуске сверхнормативной нагрузки.

Применение Методических рекомендаций позволяет выявить и использовать резервы несущей способности железобетонных балок пролетных строений для воспринятия временной вертикальной нагрузки, т.е. увеличить временные вертикальные нагрузки на пролетные строения, рассчитанные по действующим и уже отмененным нормам, с одновременным обеспечением требуемого уровня их надежности.

В настоящих Методических рекомендациях приведены блок-схема, состав исходных данных и программа расчета сечений изгибаемых железобетонных элементов на прочность, написанная на языке Фортран, и необходимые для пользования программой характеристики прочностных свойств арматуры и бетона различных классов.

Методические рекомендации разработали инж. В.М. Чачанашвили и канд. техн. наук Б.П. Белов.

Замечания и предложения по данной работе просьба направлять по адресу: 143900, г.Балашиха-6 Московской обл., Союздорнии.

1. Общие положения

1.1. Настоящие Методические рекомендации разработаны в развитие некоторых положений Инструкции по определению грузоподъемности железобетонных балочных пролетных строений автодорожных мостов” ВСН 32-78 и предназначены для оценки действительной грузоподъемности железобетонных пролетных автодорожных мостов с целью определить возможность эпизодического (разового) или регулярного пропуска сверхнормативной нагрузки.

1.2. Для оценки грузоподъемности пролетного строения предварительно определяют усилие от сверхнормативной нагрузки на одну балку (желательно современными пространственными методами расчета) и несущую способность в ее расчетных сечениях, т.е. предельное усилие, которое может воспринимать сечение из условия достижения предельного состояния по прочности и трещиностойкости.

1.3. Несущую способность сечений по прочности определяют вероятностным методом расчета, который устанавливает однозначное соответствие вероятности разрушения запасу прочности, учитывая при этом реальный совместный статистический разброс прочностных характеристик арматуры и бетона, параллельную работу всех рабочих стержней арматуры (ее многоэлементность) и документально зафиксированные данные обследования сооружения (геометрические размеры сечений, армирование, класс бетона, наличие и характер дефектов, снижающих грузоподъемность, и т.д.).

1.4. Несущую способность сечений по трещиностойкости определяют расчетом ширины раскрытия трещин в соответствии с п. 3.105-3.110 СНиП 2.05.03-84 и настоящими рекомендациями, принимая допустимую частоту обращения сверхнормативных нагрузок в зависимости от предельного значения расчетной ширины раскрытия трещин.

1.5. Регулярный пропуск сверхнормативной нагрузки возможен лишь в том случае, если грузоподъемность пролетного строения достаточна по условиям прочности и трещиностойкости.

Если грузоподъемность удовлетворяет лишь условию прочности, то допускается разовый пропуск сверхнормативной нагрузки. При этом фиксируется ширина раскрытия трещин. Если фактическая ширина раскрытия трещин не превышает допустимой по СНиП 2.05.03-84, регулярный пропуск сверхнормативной нагрузки может быть разрешен при условии периодической оценки (не реже 1 раза в месяц) состояния моста. В противном случае допустим лишь разовый пропуск такой нагрузки не чаще 1 раза в год при соответствующем наблюдении.

1.6. Скорость движения нагрузки по пролетному строению не должна, превышать 10 км/ч. Динамический коэффициент img1 при этом рекомендуется принимать равным 1,0 /1/.

1.7. Коэффициент надежности по нагрузке рекомендуется принимать равным 1,0 в том случае, если точно известны масса перевозимого груза и транспортного средства и нагрузка на каждую ось. В противном случае коэффициент принимается, равным 1,1.

2. Определение расчетного сопротивления многоэлементной арматуры при расчете на прочность и его среднеквадратичного отклонения

2.1. Расчетное сопротивление многоэлементной арматуры R при расчете на прочность следует определять по формуле (15):

img2                             (1)

где img3- коэффициент, учитывающий повышение расчетного сопротивления арматуры в зависимости от числа стержней (проволок) в сечении и определяемый по табл. 1;

img4- расчетное сопротивление арматуры при числе стержней (проволок) img5( для ненапрягаемой арматуры img6, для напрягаемой img7.

Далее по тексту расчетное сопротивление арматуры при расчете на прочность принимают с учетом ее многоэлементности.

Таблица 1


img8 для арматуры

Число

стержней

(проволок)

Стержни из стадии диаметром до 32 мм класса

Высокопрочная проволока гладкая и периодического профиля диаметром


А-I( А-II

A-III( A-IV

до 3-6 мм

1

1,00

1,00

1,00

10

1,06

1,06

1,05

15

1,14

1,17

1,12

20

1,18

1,22

1,16

24

1,19

1,24

1,17

32

-

-

1,18

48

-

-

1,20

120

-

-

1,22

200

-

-

1,23

400

-

-

1,24

1000

-

-

1,24

>1000

-

-

1,25

2.2. Среднеквадратичное отклонение img9 сопротивления многоэлементной арматуры при расчете на прочность следует определять по формуле

img10                        (2)

где img11 -среднее значение сопротивления арматуры при расчете на прочность; принимают по табл. 2;

img12 -среднеквадратичное отклонение сопротивления одного стержня (проволоки) арматуры при расчете на прочность; принимают по табл. 2.

Далее по тексту среднеквадратичное отклонение сопротивления арматуры при расчете на прочность принимают с учетом ее многоэлементности.

Таблица 2


Класс арматурной стали

Среднее значение img13, МПа (кгс/см2)

Среднеквадратичное отклонение img14, МПа (кгс/см2)

Коэффициент вариации V, %

A-I

282 (2880)

23 (239)

8,30

A-II

340 (3450)

24 (241(5)

7,00

A-III

450 (4592)

30 (321)

7,00

A-IV

700 (7120)

63 (641)

9,00

A-V

900 (9177)

80 (816)

9,00

B-II

1785 (18200)

119 (1212)

6,66

3. Расчет несущей способности сечений по прочности

3.1. Расчет несущей способности сечений, нормальных к продольной оси изгибаемых элементов

3.1.1. Расчет тавровых, двутавровых и коробчатых сечений с границей сжатой зоны, проходящей в ребре, на действие изгибающего момента М должен выполняться по СНиП 2.05.03-84 из условия

img15            

img16            (3)

при этом высоту сжатой зоны бетона img17 определять из формулы

img18                  

img19                        (4)

где img20- случайное значение сопротивления бетона осевому сжатию;

img21- ширина прямоугольного сечения или толщина стенки (ребра) таврового, двутаврового и коробчатого сечений;

img22- случайное значение высоты сжатой зоны бетона;

img23- рабочая высота сечения;

img24- ширина пояса таврового, двутаврового и коробчатого сечений в сжатой зоне;

img25- приведенная (включая вуты) высота сжатого пояса таврового, двутаврового и коробчатого сечений;

img26- расчетные сопротивления соответственно напрягаемой и ненапрягаемой арматуры сжатию;

img27- площадь сечения ненапрягаемой растянутой и сжатой продольной арматуры соответственно(

img28- расстояние от центра тяжести растянутой ненапрягаемой продольной арматуры до сжатой грани сечения;

img29- расстояния от центра тяжести сжатой соответственно ненапрягаемой и напрягаемой продольной арматуры до ближайшей грани сечения;

img30- расчётное напряжение (за вычетом всех потерь) в напрягаемой арматуре, расположенной в сжатой зоне;

img31- случайные значения сопротивления соответственно напрягаемой и ненапрягаемой арматуры растяжению;

img32 - площадь сечения напрягаемой растянутой и сжатой продольной арматуры соответственно.

3.2. Расчет несущей способности сечений, наклонных к продольной оси элементов

Расчет на действие поперечных сил по наклонным трещинам.

3.2.1. Расчет наклонных сечений элементов с поперечной арматурой на действие поперечной силы Q следует выполнять в соответствии со СНиП 2.05.03-84 из условия

img33                        

img34            (5)

где img35 -коэффициент, учитывающий условия работы стержневой арматуры;

img36- коэффициент, учитывающий условия работы арматуры из высокопрочной проволоки, арматурных канатов класса К-7 и стальных канатов со спиральной и двойной свивкой и закрытых; img37=0,7;

img38- случайные значения суммы проекций усилий всей пересекаемой (соответственно наклонное и нормальной к продольной оси элемента) арматуры при длине С проекции сечения (не превышающей img39 и значения img40, соответствующего условию, при котором поперечная сила, воспринимаемая поперечной арматурой, равна поперечной силе, воспринимаемой бетоном);

img41- тo же, напрягаемой арматуры, имеющей сцепление с бетоном; если напрягаемая арматура не имеет сцепления с бетоном, то случайное значение сопротивления img42 следует принимать равным установившемуся предварительному напряжению img43 в напрягаемой арматуре;

img44- углы наклона соответственно стержней и пучков к продольной оси элемента в местах пересечения наклонного сечения;

img45- случайное значение поперечного усилия, передаваемого на бетон сжатой зоны над концом наклонного сечения;

img46                              (6)

img47- случайное значение сопротивления бетона осевому растяжению;

img48- соответственно толщина стенки (ребра) или ширина сплошной плиты и расчетная высота сечения, пересекающего центр сжатой зоны наклонного сечения;

img49- длина проекции наиболее невыгодного наклонного сечения на продольную ось элемента( определяемая сравнительными расчетами.

Расчет на действие  нагибающих моментов

3.2.2. Расчет наклонных сечений на действие изгибающих моментов следует производить в соответствии со СНиП 2.05.03-84 из условия

img50            

img51            (7)

где img52- изгибающий момент относительно оси, проходящей через центр сжатой зоны наклонного сечения, от расчетных нагрузок, расположенных по одну сторону от сжатого конца сечения;

img53- расстояния соответственно от ненапрягаемой и напрягаемой арматуры до точки приложения равнодействующей усилии в сжатой зоне бетона в сечении, для которого определяется момент.

Расчет на действие поперечных сил

3.2.3. Для железобетонных элементов с поперечной арматурой должно быть соблюдено условие, обеспечивающее прочность по сжатому бетону между наклонными трещинами (по СНиП 2.05.03-84):

img54                        (8)

где img55- поперечная сила на расстоянии не менее img56 от: оси опоры(

img57                        (9)

где img58- коэффициент; img59=5 - при хомутах, нормальных к продольной оси элемента, img60=10 - наклонных (под углом 45°);

img61- отношение модулей упругости арматуры и бетона, определяемое по п.3.48 СНиП 2.05.03-84(

img62                              (10)

img63- площадь сечения ветвей хомутов, расположенных в одной плоскости;

img64- расстояние между хомутами по нормали к ним;

img65- коэффициент, определяемый по формуле

img66                        (11)

В формуле (11) случайное значение сопротивления img67 принимается в МПа.

4. Определение несущей способности сечений по прочности( которую можно использовать для воспринятия подвижной временной вертикальной нагрузки

4.1. Предельную несущую способность сечений по изгибающему моменту img68 и по поперечной силе img69( которую можно использовать на воспринятие подвижной временной вертикальной нагрузки, следует определять /14/ исходя из условий:

img70            (12)

img71                  (13)

img72                  (14)

img73                        (15)

где img74- средние значения несущей способности сечений соответственно по изгибающему моменту и поперечной силе;

img75- среднеквадратичные отклонения несущей способности сечений соответственно по изгибающему моменту и поперечной силе;

img76- расчетные значения соответственно изгибающего момента и поперечной силы от постоянной нагрузки.

4.2. Значения img77 для расчета на прочность по формулам (12)-(15) следует определять методом статистических испытаний (методом Монте-Карло). Блок-схема расчета приведена на рисунке, а состав исходных данных и программа - в прил. 1 и 2 настоящих Методических рекомендаций.



Блок-схема расчета сечений изгибаемых железобетонных

элементов на прочность методом статистических испытаний

(методом Монте-Карло)

4.3. Величину М и М при расчете несущей способности сечений, наклонных к продольной оси элемента, следует определять по формулам:

img78            

img79                        (16)

img80                  

img81            (17)

где img82- средние значения и среднеквадратичные отклонения сопротивления растяжению соответственно ненапрягаемой и напрягаемой арматуры (см. табл. 2 /1-6, 8-13/).

4.4. Величину img83 и img84 при расчете несущей способности сечений, наклонных к продольной оси элемента, на действие поперечных сил в целях обеспечения прочности по сжатому бетону между наклонными трещина -ми следует определять по формулам:

img85                  (18)

img86      (19)

img87                  

где img88- среднее значение и среднеквадратичное отклонение прочности бетона при осевом сжатии (табл. 3).

Таблица 3

Класс

Расчетное сопротивление бетона, МПа (кгс/см2)

бетона по прочности

Сжатие осевое (призменная прочность) img89

Растяжение осевое img90

при сжатии

img91

V

img92

img93

V

img94

В20

19,3(199)

0,135

2,6(27,0)

2,01(20,9)

0,184

0,37(3,85)

В22(5

21,6(218)

0,135

2,9(29,4)

2,12(21,8)

0,179

0,38(3,90)

В25

23,4(244)

0,135

3,2(33,0)

2,26(23,2)

0,177

0,40(4,0)

В27,5

26,3(270)

0,135

3,6(36,5)

2,36(24,3)

0,169

0,40(4,0)

В30

28,3(289)

0,135

3,8(39,0)

2,52(26,3)

0,175

0,44(4,60)

В35

32,8(334)

0,135

4,4(45,1)

2,74(28,0)

0,175

0,48(4,90)

В40

37,2(379)

0,135

5,0(51,2)

2,92(31,0)

0,171

0,50(5,30)

В45

41,1(417)

0,135

5,5(56,3)

3,10(32,0)

0,177

0,55(5,66)

В50

46,2(469)

0,135

6,2(63,3)

3,20(32,9)

0,172

0,55(5,66)

В55

50,7(520)

0,135

6,8(70,2)

3,37(34,3)

0,175

0,59(6,0)

В60

55,2(565)

0,135

7,5(76,8)

3,53(36,0)

0,178

0,63(6,4)

5. Расчет на трещиностойкость сечений без трещин

5.1. Ширину раскрытия нормальных и наклонных к продольной оси трещин img95 в железобетонных элементах, проектируемых (запроектированных) по категориям требований по трещиностойкости 2б, 3а, 3б и , необходимо проверять по СНиП 2.05.03-84.

6. Расчет по прочности несущей способности сечений, нормальных к продольной оси изгибаемых элементов, с нормальной трещиной

6.1. Расчет несущей способности тавровых, двутавровых и коробчатых сечений с нормальной трещиной с границей сжатой зоны, проходящей в ребре, должен выполняться из условия

img96      

img97            (20)

при этом высоту сжатой зоны бетона с трещиной img98 с учётом наличия многоэлементной арматуры следует определять по формуле

img99                              (21)

где img100- случайное значение высоты сжатой зоны бетона, определяемое из формулы (4) с учетом многоэлементности арматуры;

img101- высота сжатой зоны бетона( определяемая также из формулы (4), но без учета многоэлементной арматуры и случайного характера прочностных характеристик арматуры и бетона (для этого в формулу (4) следует подставлять расчетные значения сопротивления материалов вместо их случайных значений);

img102- высота сжатой зоны бетона при наличии в сечении нормальной трещины.

6.2. При расчете сечений без трещины в формулы (20) и (21) и в программу расчета следует подставить значения img103 (расчет по формулам (3) и (4)).

6.3. Высоту сжатой зоны бетона с нормальной трещиной img104 следует определять /3/ из уравнения

img105      (22)

где img106- эксцентриситет приложения усилия предварительного напряжения img107 относительно центра тяжести предварительно напрягаемой арматуры с площадью сечения img108 с учет о м момента img109 от нормальных нагрузок;

img110                              (23)

img111- коэффициенты, характеризующие геометрические параметры сечения;

img112                                    (24)

img113                              (25)

img114                              (26)

img115                        (27)

img116                                          (28)

где img117- модуль упругости предварительно напрягаемой арматуры;

img118- модуль упругости бетона.

6.4. Расчет несущей способности элементов, армированных каркасной арматурой, производится аналогично.

7. Расчет по раскрытию трещин сечений с нормальной трещиной

7.1. Ширину раскрытия нормальных и наклонных к продольной оси трещин img119 в железобетонных элементах, армированных ненапрягаемой арматурой, проектируемых (запроектированных) по категориям требований по трещиностойкости 2б, 3а, 3б и 3в, необходимо проверять по СНиП 2.05.03-84, принимая при этом высоту сжатой зоны img120 в соответствии с разд. 6 настоящих Методических рекомендаций. Чтобы получить img121( необходимо в формуле (21) img122 заменить высотой сжатой зоны img123. Величину img124 следует определять по формуле (4) с учетом многоэлементности арматуры, подставляя вместо случайных значений сопротивлений материалов их расчетные значения.

7.2. Ширину раскрытия нормальных к продольной оси трещин в предварительно напряженных железобетонных элементах, проектируемых (запроектированных) по категориям требований по трещиностойкости 2б, 3а, 3б и 3в, следует определять по формуле

img125            (29)

гдеimg126- коэффициент раскрытия трещин, величина которого зависит от радиуса армирования; учитывает влияние бетона растянутой зоны, деформации арматуры, ее профиль и условия работы элемента; принимается по п. 3.109 СНиП 2.05.03-84;

img127- модуль упругости предварительно напряженной арматуры.

7.3. Частоту пропуска сверхнормативных нагрузок по автодорожным железобетонным балочным мостам в зависимости от ширины раскрытия трещин, полученной по расчетам, назначают по табл. 4

Таблица 4

Арматура

img128( мм

Частота пропуска сверхнормативных нагрузок

Ненапрягаемая

0,30

Не ограничена


0,50

1 раз в год х)

Напрягаемая

0,15

Не ограничена


0,70

1 раз в год х)

_____________

х) С оценкой состояния моста 1 раз в год.

Примечание. img129- предельное значение расчетной ширины раскрытия трещины.

8. Расчет несущей способности сечений по прочности при поражении арматуры коррозией

8.1. Расчет сечений с пораженной коррозией арматурой производят с учетом уменьшения площади сечения арматуры по формулам (2)-(11), (16)-(20), (24)-(27), (29) настоящих Методических рекомендаций. Данный фактор учитывают при составлении исходных данных для программы расчета.

8.2. Степень поражения арматуры коррозией при отслоении защитного слоя рекомендуется устанавливать прямым измерением.

Глубину коррозии арматуры при ширине раскрытия трещин более 0,5 мм рекомендуется определять прямым измерением с вскрытием защитного слоя, а при ширине менее 0,5 мм - принимать равной 0,1 мм в год с момента образования трещины (за последний принимается год постройки моста).

9. Определение возможности пропуска сверхнормативной нагрузки по железобетонным балочным пролетным строениям автодорожных мостов

9.1. Возможность пропуска сверхнормативной нагрузки устанавливают сопоставлением доли предельной несущей способности элемента (сечения) - img130 и img131( определяемых по формулам разд. 4 настоящих Методических рекомендаций, которую можно использовать для пропуска временной вертикальной нагрузки, с нагрузкой от транспортного средства и сравнением предельной и расчетной ширины раскрытия трещин:

img132            (31)

img133            (32)

img134                              (33)

где img135- коэффициент надежности по нагрузке, принимаемый по п. 1.7;

img136- динамический коэффициент к подвижной временной вертикальной нагрузке, принимаемый по п. 1.6;

img137- нагрузки на ось транспортного средства при загружении линии влияния соответственно изгибающего момента и поперечной силы;

img138- ординаты влияния соответственно изгибающего момента и поперечной силы под осями транспортного средства;

img139- коэффициенты поперечной установки при определении соответственно изгибающего момента и поперечной силы.

Приложение 1

Состав исходных данных для программы расчета

1-я перфокарта содержит шесть целых чисел, на каждое из которых отводится по три позиции:

количество реализаций случайных величин (200);

произвольное целое число; количество интервалов гистограммы(25);

ширина столбца гистограммы (в строках АЦПУ-4);

количество сечений, в которых определяется несущая способность по изгибающему моменту img140;

количество сечений, в которых определяется несущая способность по поперечной силе img141.

2-я перфокарта (или группа перфокарт) содержит количество чисел, соответствующее количеству сечений, в которых определяется несущая способность по изгибающему моменту img142(

математическое ожидание img143

среднеквадратичное отклонение img144

математическое ожидание img145

среднеквадратичное отклонение img146

математическое ожидание img147

среднеквадратичное отклонение img148

Количество перфокарт в группе зависит от количества сечений с разным числом арматурных стержней.

На каждое число, содержащее в обязательном порядке десятичную точку, отводится 10 позиций.

Все последующие исходные данные набиваются в этом же формате, причем каждая новая группа данных начинается с новой перфокарты.

Перфокарты (или группы перфокарт) с 3-й по 18-ю содержат для различных сечений значения следующих параметров:

3-я - img149            11-я - img150

4-я - img151            12-я - img152

5-я - img153            13-я - img154

6-я - img155            14-я - img156

7-я - img157            15-я - img158

8-я - img159            16-я - img160

9-я - img161            17-я - img162

10-я - img163           18-я - img164

Количество параметров, содержащихся в 3-18-й перфокартах, соответствует количеству сечений, в которых определяется несущая способность по изгибающему моменту.

19-я перфокарта содержит шесть чисел - параметры распределения случайных величин img165(

математическое ожидание img166

среднеквадратичное отклонение img167

математическое ожидание img168

среднеквадратичное отклонение img169

математическое ожидание img170

среднеквадратичное отклонение img171

Последующие перфокарты (или группы перфокарт) содержат для различных сечений значения параметров:

20-я - img172;          26-я - img173;

21-я - img174;          27-я - img175;

22-я - img176;          28-я - img177;

23-я - img178;    29-я - img179;

24-я - img180;    30-я - img181;

25-я - img182;

Количество параметров, содержащихся в 19-30-й перфокартах, соответствует количеству сечений, в которых определяется несущая способность по поперечной силе.

Приложение 2

Программа расчета сечений изгибаемых железобетонных элементов на прочность методом статистических испытаний (методом Монте-Карло)

DIMENSION AP(50)( AS(50)( AS1(50)( RSC(50)( RPC(50), AP1(50)(

*    BF1(50)( B(50)( HF1(50)( H0(50)( H01(50)( AS11(50)( AP11(50)

DIMENSION R(2,5), S(2,5), Q(200)

DIMENSION MA4(50)( MA41(50)( SAL(50)( SAL1(50)( SASI(50)(

  * SASW(30), SAPI(50)( BQ(50)( H0Q(50)( C(50)( SAPW(50)( XT(50), X1(50)

REAL MA4,MA41

COMMON /RANDOM/ M2, IA, IC( MIC, SU

PRINT 15

15  FORMAT (14( X (расчет сечений изгибаемых железобетонных

  * элементов на прочность вероятностным методом(

М2=0

READ 1, N( IY( M, L, KRM, KRQ

1   FORMAT (813)

READ 12, R(1,1), R(1,2), R(1,3), R(2,3)

READ 12, (AP(I), I=1,KRM)

READ 12, (AS(I), I=1,KRM)

READ 12, (AS1(I), I=1,KRM)

READ 12, (RSC(I), I=1,KRM)

READ 12, (RPC(I), I=1,KRM)

READ 12, (SPC1(I), I=1,KRM)

READ 12, (AP1(I), I=1,KRM)

READ 12, (BF1(I), I=1,KRM)

READ 12, (B(I), I=1,KRM)

READ 12, (HF1(I), I=1,KRM)

READ 12, (H0(I), I=1,KRM)

READ 12, (H01(I), I=1,KRM)

READ 12, (AS11(I), I=1,KRM)

READ 12, (AP11(I), I=1,KRM)

READ 12, (XT(I), I=1,KRM)

READ 12, (X1(I), I=1,KRM)

PRINT 14

14  FORMAT (//13X, (РАСЧЕТ НЕСУЩЕЙ СПОСОБНОСТИ СЕЧЕНИЙ,

  * НОРМАЛЬНЫХ К ПРОДОЛЬНОЙ ОСИ ЭЛЕМЕНТА,

  * ПО ИЗГИБАЮЩЕМУ МОМЕНТУ

12  FORMAT (8F10.3)

DO 13 IS=1,KRM

READ 12,R(2,1), R(2,2)

PRINT 16, IS

16  FORMAT (/4, 'НОМЕР СЕЧЕНИЯ', I5)

DO 3 I=1, N, 2

DO 4 J=1, 3

4 CALL NORM2 (R(1,J), R(2,J) ,S(1,J)( S(2,J)( IY)

I1=I+1

DO 5 J=I,I1

I2=Ii-J+i

Q1=S(12, 1)(AP (IS)+S(12,2)(AS(IS)-RSC(IS)(AS(IS)-(RPC(IS)-SPC1( IS)

 * (APi(IS)-S(I2,3)(HF1(IS)((BF1(IS)-B(IS))(XT(IS) /XI (IS)

5   Q(J)=Q1((H0(IS)-Q1/(2.(S(I2,3)(B(IS)))+S(I2,3)((BF1(IS)-B(IS))(HF1

((IS)((HQ(IS)-.5(HFi(IS))+RSC(IS)(AS1(IS)((H01(IS)-AS11(IS))+(RPC(I(S)-SPC1(IS))((HO(IS)-AP11(IS))

3 CONTINUE

PRINT 17

17 FORMAT (/20Х, РЕАЛИЗАЦИИ ЗНАЧЕНИЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ НЕСУЩЕЙ СПОСОБНОСТИ ПО ИЗГИБАЮЩЕМУ МОМЕНТУ)

PRINT 8,(Q(I),I=1,N)

8 FORMAT (10F11.3)

RETURN

END

Приложение 3

Последовательность расчета

1. Назначить расчетные сечения в элементах пролетного строения.

2. Определить расчетные значения усилий от временной вертикальной нагрузки для каждого из рассчитываемых сечений наиболее нагруженной балки с учетом коэффициента поперечной установки.

3. Определить для каждого рассчитываемого сечения расчетное сопротивление R и среднеквадратичное отклонение img183многоэлементной арматуры при расчете на прочность соответственно по формулам (1) и (2).

4. Применив программу расчета сечений изгибаемых железобетонных элементов на прочность методом статистических испытаний (методом Монте-Карло, см. прил. 2), определить несущую способность по прочности сечений, нормальных к продольной оси элементов, без трещин и с нормальной трещиной (соответственно формулы (3), (4) и (20)-(28)), а также сечений, наклонных к продольной оси элементов, на действие поперечных сил по наклонным трещинам (формулы (5), (6)).

В результате расчетов получены характеристики распределения несущей способности сечений по изгибающему моменту и поперечной силе - img184

5. Характеристики распределения по изгибающему моменту (среднее значение и среднеквадратичное отклонение) несущей способности сечений, наклонных к продольной оси элемента, следует определять по формулам (16) и (17).

6. Характеристики распределения (среднее значение и среднеквадратичное отклонение) несущей способности сечений, наклонных к продольной оси элемента, рассчитываемых на действие поперечных сил в целях обеспечения прочности по сжатому бетону между наклонными трещинами, следует определять по формулам (18) и (19).

7. Предельную несущую способность сечений по изгибающему моменту и поперечной силе, которую можно использовать на воспринятие подвижной временной вертикальной нагрузки, следует определять по форму -лам (14) и (15).

8. Ширину раскрытия нормальных и наклонных продольной оси трещин определяют в соответствии разд. 3 настоящих Методических рекомендаций и СНиП 2.05.03-84.

9. Ширину раскрытия нормальных к продольной оси трещин в предварительно напряженных железобетонных элементах при наличии в сечении нормальной трещины определяют по формуле (29).

10. Оценку грузоподъемности пролетного строения в целях определения возможности пропуска по нему сверхнормативной нагрузки производят для каждого из рассчитываемых сечений согласно уравнениям (30)-(32).

Грузоподъемность пролетного строения устанавливают по грузоподъемности наиболее слабого несущего элемента (сечения).

ЛИТЕРАТУРА

1. Андреев В.Г., Чахлов B.C. Сборный устой столбчатой конструкции. - Транспортное строительство, 1977, № 4.

2. Девяткина З.Н., Золотов В.Н. Исследование свойств арматуры классов А-IV, Ат-VIII. - В кн.: Железобетонные конструкции. Труды УралНИИстромпроекта, вып. VI, 1972.

3. Иосилевский Л.И. и др. Железобетонные пролетные строения мостов индустриального изготовления. М.: Транспорт, 1986.

4. Иосилевский Л.И., Чирков В.П. Расчет соединения плиты со стенкой при помощи стержней-шпонок. Труды МИИТ, ВЫП.219. М.: Транспорт, 1966.

5. Мадатян С.А., Оширов Б.Ф., Суриков И.Н. Механические свойства термически упрочненной арматурной стали марки 08Г2С. - В кн.: Совершенствование арматуры железобетонных конструкций. НИИжелезобетон. Волгоград, 1979.

6. Мадатян С.А., Падин О.И. Свойства и особенности применения новых видов горячекатаной арматуры классов А-IV и А-V в железобетонных конструкциях. - В кн.: Эффективные виды арматуры для железобетонных конструкций. М.: Стройиздат, 1970.

7. Методическое руководство по определению грузоподъемности железобетонных балочных пролетных строений автодорожных мостов. Белдорнии. Минск, 1974.

8. Михайлов К.Б. Проволочная арматура для предварительно напряженного железобетона. М.: Госстрой - издат, 1964.

9. Мулин Н.М. Стержневая арматура железобетонных конструкций. М.: Стройиздат, 1974.

10. Попелянский Ю.Л. Статистический анализ основных механических характеристик высокопрочной арматурной проволоки. - Бетон и железобетон, 1967, № 6.

11. Ратнер Б.P. Экономичная сталь для периодических профилей. М.: Металлургиздат, 1963.

12. Рубинчик И.И. Результаты испытаний образцов высокопрочной проволоки для предварительно напряженных железобетонных конструкций. Труды ЦНИИС, вып 37. М., 1960.

13. Соколовский А.И. Арматурные стали. М.: Металлургия, 1964.

14. Чачанашвили В.М. К решению вопроса о возможности пропуска сверхнормативных нагрузок по автодорожным железобетонным мостам. - В сб.: Совершенствование технологии строительства, повышение качества и долговечности конструкций автодорожных мостовых сооружений. Труды Союздорнии. М., 1987.

15. Чирков В.П. Вероятностные методы расчета мостовых железобетонных конструкций. М.: Транспорт, 1980.

 
 
ГОСТЫ И СНИПЫ, Москва, 2004 г.